Four Ways Radiology Can Reduce Its Climate Change Impact

Typically, climate change (a.k.a. global warming) is associated with planes, trains, and automobiles using fossil fuels, hazy skies, and radioactive plants pushing clouds into the atmosphere. However, the radiologic industry plays a more significant role than you might imagine, and industry leaders say the time to reduce that impact is now.

Published in the Journal of the American College of Radiology, a team of industry experts, including Geraldine McGinty, M.D., MBA, president of the American College of Radiology (ACR), issued a call-to-action statement.

“Radiology is well-positioned to spearhead climate change action in our practices and the healthcare system at large. Addressing climate change provides an opportunity to improve healthcare delivery and increase value of care using a different problem-solving approach,” said the team.

The Yale University School of Medicine released data that shows 10 percent of the nation’s carbon emissions (and nine percent of harmful non-greenhouse air pollutants) originate from the United States healthcare system.

Radiology is a significant contributor to each hospital’s energy use. In Switzerland, as the team pointed out, their three CT and four MRI scanners accounted for four percent of the hospital’s overall energy use. Being more environmentally conscious isn’t specific to the industry; it’s a patent priority as well. In the United Kingdom, a survey conducted showed that 92 percent of patients also consider sustainable healthcare operations vital.

Substantial energy use: Radiology utilizes an enormous amount of energy. In the span of a year, cumulative consumption from one CT scanner can equate to five four-person households. A single MRI uses nearly as much as 26 four-person residences. If at all possible, opt for ultrasound instead. Not only is it cheaper, but it also uses less radiation and has a lower environmental impact. Moreover, using Artificial Intelligence (AI) to shorten MRI protocols can lower energy use. To further reduce the carbon footprint, implementing life cycle analyses can quantify the environmental impact of various modalities.

Standby mode: To reduce the amount of energy used by the imaging machines, use standby mode. Even when idle, they are consuming significant amounts of energy, according to the team. Cooling machines take an equal amount of energy to operate. The team recommends a 24-hour operating cycle, as well as exploring energy-efficient HVAC systems and imaging technique improvements.

Power down: Though leaving the PACS off overnight might be more convenient and efficient for workload management, the team suggests turning the machine off overnight. A hospital in Iceland left its systems on overnight and accumulated 25,040 kilowatts of energy, producing 17.7 metric tons of carbon dioxide. These levels are equivalent to the emissions produced by four passenger cars annually. To decrease costs and improve energy efficiency, powering down can be an easy way to accomplish these goals. Additionally, the team suggested reducing excess packaging in your procedures to drive down the environmental costs in production and disposal.

Opt for clean energy: The team said now is the time to shift from fossil fuels and lean toward renewable energy. As prices are dropping, several facilities are already making progress. For example, Kaiser Permanente has achieved carbon-neutrality, and Gundersen Health System is already net carbon positive.

To make these changes a reality, radiologists need to become activists, according to the team. Lobby local ACR chapters to join national efforts or reach out to specialty societies to further push environmentally sustainable radiology. Publishing carbon footprints can help other medical departments understand the environmental dangers associated with over-utilization.

Radiologists are urged to join the Medical Society Consortium on Climate Health, which includes 29 national medical societies, as suggested by the team.

_____________________________________________________________________________

RadParts is the world’s largest independent distributor of OEM replacement parts. We specialize in low-cost parts for repairing linear accelerator and radiation equipment. Our mission is to provide high-quality, user-friendly, low-cost parts and support for linear accelerators and radiation equipment. Contact RadParts at 877-704-3838 or visit us on the web: https://www.radparts.com.

 Written by the digital marketing staff at Creative Programs & Systems: www.cpsmi.com.

Disney and Philips Partner to Improve MRI Exams for Children

For the first time in its history, Disney will collaborate as part of a clinical research project. Children who undergo MRI might soon experience custom-made animation, including specially made Disney stories within Philips Ambient Experience. This solution integrates architecture and design to enable technologies such as dynamic lighting, video projections, and sound to create a relaxing atmosphere.

Six hospitals across Europe have been selected to begin trials this summer; the results will be compiled and released in the fall or winter. Philips will test its Ambient Experience program using animated stories showcasing some of Disney’s most beloved characters. Disney animators will create six pieces of original, stylized Disney animation for use in hospitals. The idea is aimed at reducing fear and anxiety often felt by children who undergo MRI.

Well-known characters such as Mickey Mouse, Ariel, and those from Marvel’s Avengers, Star Wars, and others will appear in a diagnostic setting for the first time. The results from the six leading hospitals in Europe will be analyzed to alleviate children’s anxiety, create bonds, and improve staff’s ability to carry out their MRI-related tasks.

MRI scans and other medical exams can be challenging for some adults, and especially for children who are anxious, claustrophobic, or naturally wiggly. The Philips Ambient Experience currently has 2,000 installations worldwide. Its goal is to mitigate those difficulties by creating an engaging, multi-sensory imaging environment that is welcoming and relaxing for children and adults alike.

Patients can select a theme of their choice, personalizing the room’s lighting, video, and sound. Ambient Experience Patient In-bore Connect supports feelings of empowerment and control, as it lets patients relax, follow directions, and minimize motion once they are within the MRI. For younger pediatric patients, this is important to explain scan duration, helping them remain still, and reduces the need for repeat scans.

This new collaboration unifies Philips’ vast clinical knowledge and expertise with Disney’s masterful, engaging storytelling. A sense of familiarity, control, and comfort will surely result from the joint effort.

Jan Koeppen, President, The Walt Disney Company, EMEA, said, “At Disney, we look forward to complementing Philips’ MRI experience with our stories and characters. We are excited to see the results of the clinical research and to quantify the impact our characters can have in this environment.”

Through Aladdin and Jasmine on a magical carpet ride or Spiderman carefully swinging through skyscrapers, each story is customized and designed to support children in their MRI experience.

RadParts is the world’s largest independent distributor of OEM replacement parts. We specialize in low-cost parts for repairing linear accelerator and radiation equipment. Our mission is to provide high-quality, user-friendly, low-cost parts and support for linear accelerators and radiation equipment. Contact RadParts at 877-704-3838 or visit us on the web: https://www.radparts.com.

Written by the digital marketing staff at Creative Programs & Systems: www.cpsmi.com.

MRI Providers: Watch for Patients with Metal Face Masks & Magnetic Eyelashes

Technologists are well-aware of the possibility of metal burns from MRI machines. Due to the components of an MRI, all metal must be removed prior to patients entering Zone III, the space before entering the scanner room. The COVID-19 pandemic has forced the world to wear face masks in public indoor areas, including medical procedures. Also, of recent fashion trends, women have become more prone to use magnetic eyelashes, a beauty product that is easier to apply and remove. Both have resulted in MRI patient injuries.

The U.S. Food and Drug Administration (FDA) released a statement warning health care providers that patients might be injured if they wear face masks with metal parts during a Magnetic Resonance Imaging (MRI) exam. These small metal parts are usually found within the nose area or throughout the mask fabric. Nose clips, wires, ultrafine particles, or antimicrobial coating (silver or copper) can become hot and burn MRI patients.

This note of caution comes as a patient received burns from donning a face mask during an MRI. “The FDA is reminding patients and providers that patients should not wear any metal during an MRI,” according to the statement issued.

The Journal of Applied Clinical Medical Physics issued a report explaining how magnetic eyelashes are unsafe in an MRI; some lashes can rapidly become moving projectiles. False eyelashes are placed onto magnetic eyeliner (applied to eyelids) or discreetly clamp around natural eyelashes. Patients might forget to mention the eyelashes and MRI technicians might not notice them.

All medical providers should screen patients for MRI safety. Tiny metallic objects within face masks or fake eyelashes can easily slide past an initial assessment. If patients experience burns while wearing face masks, providers are encouraged to report the incident to the FDA. Gathered reports help the FDA improve patient safety.

For more information regarding the FDA’s warning, read the full report. The complete journal article pertaining to magnetic eyelashes can be found here.

____________________________________________________________________________

RadParts is the world’s largest independent distributor of OEM replacement parts. We specialize in low-cost parts for repairing linear accelerator and radiation equipment. Our mission is to provide high-quality, user-friendly, low-cost parts and support for linear accelerators and radiation equipment. Contact RadParts at 877-704-3838 or visit us on the web: https://www.radparts.com.

Written by the digital marketing staff at Creative Programs & Systems: www.cpsmi.com.

Technologists Celebrated during National Radiologic Week

Radiologic technicians have been on the front lines of the COVID-19 pandemic more than most people. These technicians have taken a front-seat approach and made a direct impact on the virus outbreak. They work extremely close with coronavirus patients daily, unlike many people throughout the world.

National Radiologic Technology Week (NRTW) marks the centennial celebration for the American Society of Radiologic Technologists (ASRT.) It also exhibits and honors those who perform thousands of X-rays, MRIs, CTs, mammograms, nuclear medicine, cardiac and vascular international, and ultrasound procedures weekly. The vital work of radiologic technologists across the nation are celebrated annually during NRTW. Wilhelm Conrad Röntgen discovered the x-ray on November 8, 1895, which is commemorated by NRTW.

More than 340,000 radiologic technologists have completed chest X-rays, CT scans, and cardiac ultrasounds for COVID-19 patients. These lifesaving procedures have been crucial in detecting and handling virus advancement. When dealing with pandemic patients, proper ventilation placement and ensuring patients receive appropriate care is paramount.

To learn more about NRTW, check out the American Society of Radiologic Technologists website. For more information about purchasing radiologic parts, contact RadParts for all your needs today.

RadParts is the world’s largest independent distributor of OEM replacement parts. We specialize in low-cost parts for repairing linear accelerator and radiation equipment. Our mission is to provide high-quality, user-friendly, low-cost parts and support for linear accelerators and radiation equipment. Contact RadParts at 877-704-3838 or visit us on the web: https://www.radparts.com.

Written by the digital marketing staff at Creative Programs & Systems: www.cpsmi.com.

Problematic Body MRI Discrepancy Rates and Errors

Previous studies have outlined disagreement between radiologists and inconsistent secondary interpretations of MRI scans. Researchers at the University of Vermont and the University of Southern California Medical Center have recently published the first study to focus on secondary interpretations of body MRI evaluated by type of likely error. According to the journal article, up to 70 percent of body MRI interpretations have at least one discrepancy. Since most of these errors are cognitive, a push for sub-specialty trained providers to read these studies is crucial.

Interpretation errors, especially those in radiology, are particularly common with MRI scans. Pelvic and abdominal imaging are the most easily misread. These mistakes commonly lead to delayed or improper treatment plans. Discrepancy rates can range from two percent to six percent. Secondary interpretations can be as high as 56 percent, according to existing research.

Researchers retrospectively reviewed 357 secondary body MRI reports captured between January 2015 and December 2018 to determine the actual discrepancy rate. Initial reports were analyzed, and those with discrepancies were divided.

At least one discrepancy was identified in 246 cases, or 68.9 percent. A secondary discrepancy was found in 54 of those cases. Most differences were attributed to cognitive errors (68.8 percent), and secondary discrepancies, considered perceptual errors, accounted for 59.3 percent.

To thoroughly examine the reasons behind these discrepancies, researchers found that faulty reasoning (misclassification of the abnormality) was responsible for 34.3 percent of all instances, including 37.8 percent of primary discrepancies. Additionally, search satisfaction occurred with 37 percent of second discrepancies and 15 percent of overall discrepancies.

The team hypothesized that MRI scans were ordered to answer a specific question. Once that question was answered, the radiologist likely did not examine the rest of the scan for other abnormalities. The discrepancy rates are higher than what was previously reported due to several factors. General radiologists might be unaware of the MRI’s high sensitivity and ability to determine specific diagnoses. Body imaging frequently has the highest error rates, and double-reading by sub-specialists also increases the discrepancy rate.

Read the full article in the American Journal of Roentgenology for more information regarding discrepancy rates and errors. For all your radiation equipment repair needs, contact RadParts today. We have a vast selection of innovative repair solutions that can save you up to 50 percent or more.

RadParts is the world’s largest independent distributor of OEM replacement parts. We specialize in low-cost parts for repairing linear accelerator and radiation equipment. Our mission is to provide high-quality, user-friendly, low-cost parts and support for linear accelerators and radiation equipment. Contact RadParts at 877-704-3838 or visit us on the web: https://www.radparts.com.

Written by the digital marketing staff at Creative Programs & Systems: www.cpsmi.com.

Huge Breakthrough Made in the Development of Creating the Worlds Most Powerful Particle Accelerator

Researchers affiliated with UNIST (Ulsan National Institute of Science and Technology) have demonstrated, for the first time, the ionizing cooling of muons. For those who work in the field, this is considered a massive step toward creating the world’s most powerful particle accelerator. The new muon accelerator is expected to provide a better understanding of the fundamental properties of matter.

The Muon Ionization Cooling Experiment (MICE) collaboration has been behind the breakthrough, including many UK scientists. One of the pioneers is Professor Moses Chung, who leads his team at the School of Natural Sciences at UNIST. His organization’s work has been featured in the online version of Nature on February 5, 2020.

“We have succeeded in realizing muon ionization cooling, one of our greatest challenges associated with developing muon accelerators,” says Professor Chung. “Achievement of this is considered especially important, as it could change the paradigm of developing the Lepton Collider that could replace the Neutrino Factory of the Large Hadron Collider (LHC).”

These experiments have demonstrated that the phase-space volume occupied by the muon beam can be controlled with ionization cooling, as predicted by the field’s theories.

Read more about this leading breakthrough in particle accelerators, here.

New Cancer Treatment Delivers Weeks of Radiation Therapy in Just One Second

For decades radiation therapy has been used to treat cancer and is still the best option we have at defeating the disease. The downside to radiation therapy is that it often takes weeks or even months for treatment session cycles and comes with collateral damage by also destroying healthy cells in the body.

However, researchers at the University of Pennsylvania have discovered a way to deliver treatment in under one second. FLASH radiotherapy is an emerging form of therapy that involves giving a patient a one-second dosage of concentrated radiation that they would usually receive over a week. Experiments have proven that the result of the cancerous cells is comparable to the standard treatment duration; however, the exception being that damage to healthy tissue is significantly reduced.

Pennsylvania University researchers found that adjusting the fundamental particle used could make FLASH radiotherapy more effective. Typically, electrons are used in therapy, but they don’t penetrate very deep into the body, meaning they’re really only useful for shallower cancer types such a skin cancer.

The FLASH therapy model uses protons and showed that linear accelerators could be modified to produce and deliver these particles. Since protons penetrate deeper into body tissue, they can be much more effective in treating more significant tumor types.

“The is the first time anyone has published findings that demonstrate the feasibility of using protons, rather than electrons, to generate FLASH doses, with an accelerator currently used for clinical treatments,” says James M. Metz, co-senior author of the study.

Read more on how FLASH treatment is making breakthroughs in treating cancer here.

Radparts provides high quality, user-friendly, and low-cost parts and support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com.

Why Buying a Refurbished Linac Makes Sense for a Clinic

When deciding to add or upgrade a facility’s medical linear accelerator (Linac) many factors need to be thoroughly examined such as budget, location, time frames, and other personal impacts. One major decision to make is if to purchase a new or used/refurbished Linac and determining which will offer the best benefits long term. Depending on your situation sometimes a new Linac is required but most often a refurbished option will work perfectly, allowing you to save money as well. Below, are a few reasons to choose a refurbished linear accelerator for your next purchase.

Fewer Patients Being Treated

If your company is new or smaller in size, purchasing a refurbished Linac could be very beneficial. Pre-owned or refurbished Linac’s cost less and have lower monthly lease payments than choosing new equipment. Having fewer than 8 to 10 patients a day is generally considered a small medical facility. With fewer patients equals less money to help cover the costs of equipment fees so taking it low and slow maybe a better business option to guarantee that your clinic continues to grow at a steady pace, allowing quality and effective treatments for all patients. Veterinarian clinics or research facilities may also benefit from a refurbished Linac as they generally do not require all the advanced technologies provided in newer models. The use of linear accelerators may not always be for medical use; instead for industrial uses to image materials.

 Operating with Only One Linac or Want a Backup

Often a dilemma will arise when a company is moving into a new location and cannot afford to have a machine down during the relocation process, which can take about 3 to 4 weeks for the transition. An option to avoid this situation is to purchase a refurbished replacement that is like the existing equipment and have it installed in the new location. Once the new facility is complete and open for business, the patients can receive treatment with the newly refurbished equipment and you can either keep the original linear accelerator as a backup or sell it. This solution prevents companies from losing patients from a lack of available machines.

Other Factors to Consider in Budget

Purchasing a used or new linear accelerator is only the first step in getting the proper equipment setup for your business. Other services that should be researched with your Linac is the warranty, service and maintenance plans. This information will help you decipher which options are best for your facility and meet your needs. Also, remember to consider the costs of equipment removal and disposal. The purchasing and planning process of linacs can be very overwhelming which is why choosing the right company for the job is key for a successful addition/upgrade to your facility.

Radparts is the world’s largest independent distributor of OEM replacement parts for Linear Accelerators and Radiation Oncology equipment.  Radparts provides high quality, user friendly, low cost parts and support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com/.