Updates on the Radiation Markets with a Focus on LINAC

According to ResearchAndMarkets.com, a marketing research provider to businesses, the global radiation therapy market is expected to reach $10.11 billion in 2024, witnessing growth at CAGR of 3.38% over the period 2020-2024. Surging cancer cases, rising healthcare expenditure, economic and population growth with expanding urbanization are predicted to lead the global radiation therapy markets. However, a hindrance to these areas could be expected with stringent regulations and barriers to implementation. 

Advancements in technology, increasing preference towards non-invasive procedures, and public awareness, could be a few notable trends and are likely to develop over the next few years. The global radiation markets can be categorized into external beam radiation therapy, internal beam radiation therapy, and systemic radiotherapy. The external beam radiation therapy market is segregated both by type and device. 

Depending on the type, the global external beam market is segmented into the following categories: intensity-modulated radiation therapy (IMRT), image-guided radiation therapy (IGRT), tomotherapy, stereotactic radiosurgery, stereotactic body radiation therapy, and proton therapy. The global external beam radiation therapy market is also categorized into three areas – LINAC (Linear Accelerators), proton beam therapy devices, and compact advanced therapy devices. 

North America is the fastest-growing market because of the evolving usage in novel technologies, rising disposable income, and healthcare expenses. Rising awareness regarding procedures and sophisticated diagnostic approaches is a big part of the growth in this market. Europe comes in second for the largest market in radiation therapy and has already expanded into deeper economic levels. Radiation therapy treatment products and linear accelerator parts are expected to grow along with the trend in these developing market economies. 

For more information, read more at https://www.itnonline.com/content/radiation-therapy-market-update-focus-linac

Scientists Create a Particle Accelerator That Fits on a Chip

Scientists at Stanford and SLAC have created a silicon chip that can accelerate electrons by using an infrared laser to deliver a similar energy boost that takes microwaves many feet.

In a January issue of Science, a team led by an electrical engineer, Jelena Vuckovic, conveyed how he carved a nanoscale channel out of silicon, sealed it in a vacuum and sent electrons through an opening while beams of infrared light were transmitted by the channel walls to speed the electrons along.

The accelerator-on-a-chip demonstrated in Science is just a prototype. However, Vuckovic said its design and fabrication techniques could be scaled up to deliver particle beams accelerated enough to perform cutting-edge experiments in chemistry.

“The largest accelerators are like powerful telescopes. There are only a few in the world and scientists must come to places like SLAC to use them,” Vuckovic said. “We want to miniaturize accelerator technology in a way that makes it a more accessible research tool.”

“We can derive medical benefits from the miniaturization of accelerator technology in addition to the research applications,” Solgaard said.

Click here to read more about Vuckovic’s research on his discoveries regarding the silicon chip accelerator.

Radiotherapy Treatments for Bowel Cancer Patients to Be Shortened Due to COVID-19

An international panel of cancer experts has recommended a one-week treatment protocol for patients who need radiotherapy. On April 7, 2020, the group discussed the best way to minimize the additional issues that radiotherapy treatment causes, namely, weakened immune systems. Surgery, which usually happens one to two weeks after radiotherapy, can be safely delayed by up to 12 weeks, says the expert panel. 

People with bowel cancer are more susceptible to severe complications from COVID-19 because their immune systems are weakened. Shortening the length of radiotherapy replaces the need for chemotherapy, which typically can make the immune system even weaker. 

“The COVID-19 pandemic is a global emergency and we needed to work very quickly to identify changes that would benefit patients. Our recommendations were published 20 days after our first meeting. This process normally takes many months, if not years,” said David Sebag-Montefiore, professor of clinical oncology at the University of Leeds and who lead the panel of cancer experts. 

The panel, which was comprised of 15 top cancer professionals, showed that surgery could be safely postponed after radiotherapy from oncology equipment was performed. This protocol allows surgery to be scheduled after the peak of the pandemic. 

Read more on how radiation therapy has been affected by the COVID-19 pandemic here

PTW Announces Big News for the BEAMSCAN MR

The PTW has announced the 510(k) clearance from the U.S. Food and Drug Administration (FDA) for the BEAMSCAN MR Motorized 3D Water Phantom. The BEAMSCAN MR is now available on the market within the U.S. PTW has already completed the installation of the first item in North America located at the Princess Margaret Cancer Centre in Toronto, Ontario, Canada. 

This new addition will provide a dedicated, fully equipped solution for beam data commissioning and annual QA of MR-LINACS. The center in Toronto is one of the largest cancer centers in the world. It is home to two state-of-the-art MR-LINAC systems, one being the Elekta Unity machine, which offers BEAMSCAN MR compatibility. To read more information about the BEAMSCAN MR and PTW, read this article here.

Replacing or Upgrading a LINAC? Here’s What You Need to Know.

Radiotherapy is a critical treatment process used in hospitals and clinics for patients with cancer. Therefore, it is extremely important to ensure that you are using the right equipment to gain the highest quality of care. Linear accelerator (LINAC) systems are one of the most expensive assets in terms of medical equipment today. Choosing to replace or upgrade LINAC equipment is a significant matter as it impacts the facility’s operations, doctor’s decisions, and the patient’s health. There are four main categories that equipment can fall into that are based on a hospital or clinic’s needs and capabilities.

Newer Equipment with Full Upgrades

Being able to provide the best level of care for patients should be the highest goal for any medical facility. Thus, having new equipment with upgraded features offers the best of the best in terms of care. If a clinic needs to move, it would still be cost-effective to pay the relocation charges, which can be over $100k in expenses, instead of purchasing a new replacement LINAC system.

Newer Equipment with Fewer Upgrades

Choosing a LINAC system with fewer upgrades can save money and might be more appropriate for smaller clinics that see fewer patients. However, specific technologies, like portal imaging, may be beneficial for those who want higher-quality devices. There is a good chance that a facility will be continuing to use this equipment for a while before it depreciates. The best advice is to determine which upgrades would be most appropriate for your office.

Older Equipment with Full Upgrades

If your LINAC system is older than 20 years, it’s likely your machine has paid for itself even after additional upgrades. Older equipment can still be reliable, but as technology progresses, they soon will end up costing you more money and become less efficient. Also, if a company needs to relocate, the relocation costs may end up costing you more than a new machine.

Older Equipment with Fewer Upgrades

This remaining category should generally be looked upon as the last consideration. In most cases, equipment will no longer perform the necessary tasks required for treatments. Replacement parts will continue to become sparse and more costly as new machines come into the marketplace, rendering older versions obsolete.

Radparts is the world’s largest independent distributor of OEM replacement parts for Linear Accelerators and Radiation Oncology equipment.  Radparts provides high quality, user friendly, low cost parts and support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com/.



Monitoring of Patient Movement During Radiotherapy May Get Easier

Research from Washington University School of Medicine in St. Louis has found using new mmWave technology to be a great asset to perform precise monitoring of patient motion in real-time during radiotherapy treatments. The mmWave technology can monitor displacements with .1mm to 1 mm accuracy at low cost using a simple and easy to use device. Imaging with millimeter waves can overcome obstacles of current techniques like the optical tracking of a patient’s skin surface or CT scanning. This new device can also monitor breathing and cardiac motion that may, in time, replace respirometers or other breathing monitoring devices. To read more about the research and the outcome of mmWave technology, you can read this article for more information.

Beams Used in Radiation Therapy

The use of external beam radiation therapy is one of the most common forms of cancer treatments that a doctor or oncologist will recommend. This method involves radiotherapy equipment such as a linear accelerator that aims radiation from outside of a patient’s body and directly targets local areas of a cancer site. Various types of cancers can be treated with external beam radiation therapy, and depending on the unique characteristics of the tumor, a selection of systems and treatments will be formed for the best outcome. Not only are there different types of machines that can be used, but also the radiation beam used in external radiation therapy can come from three kinds of particles called photons, protons, and electrons.

Photons

The majority of radiation therapy machines use ionizing photon beams since they can reach tumors deep in the body. Photons are also used in x-rays, although they consume a much lower dose of the particle in comparison. The radiation that is delivered during photon treatment will damage the DNA of tumors and healthy cells alike. Radiation therapists aim to maximize the dose targeting the tumor while minimizing the radiation to nearby healthy tissues by creating different paths with multiple fields. To avoid overexposure to healthy cells, the treatment is generally given in stages over repeated scheduled sessions so that the healthy cells have time to repair.

Protons

Charged particle radiotherapy is an alternative method of radiotherapy that uses beams of protons or other positively charged particles such as helium, carbon, or other ions that are not photons. These types of beams can also reach tumors deep inside the body, but they perform differently than photons as they do not scatter radiation on their path and will stop once they reach the targeted tumor. Due to the physical characteristics of charged particles, it may be possible to cover the tumor area with only one radiation field, creating an advantage over the use of photons to spare more healthy tissues and cells. Clinical trials are continuing to compare the usage of these two energy types. There are cancer centers that are beginning to use proton beams in radiation therapy, but they have higher costs and require a larger space to fit the increased size of the equipment.

Electrons

Particles with a negative charge are electrons. Electron beam radiation therapy is designed to treat cancers like lymphoma and other tumors near the surface since these electrons do not go deep into the body. These therapy options can be done in two different ways:

  1. Spot treatment – This method is used for one or more cancerous spots on the body that needs treatment.
  2. Total Skin Electron Beam Therapy (TSEB) – This method is used when the entire surface of the skin needs to be treated. Other treatments called compensation treatments can be part of the treatment plan to guarantee that every area of the skin receives the proper dose required.

Radparts is the world’s largest independent distributor of OEM replacement parts for Linear Accelerators and Radiation Oncology equipment. Radparts provides high quality, user-friendly, and low-cost parts and support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com/.



World Cancer Day Brings Discussions for More Affordable Radiotherapy Treatment Options

In celebration of World Cancer Day on February 4th, director of IAEA General Rafael Mariano Grossi raised awareness about radiotherapy and how widely used the treatments are throughout the world. He brought to light the fact that 1/3 of lower-to-middle-income countries do not have access to any radiotherapy treatments. A total of 28 countries in Africa do not have a single radiotherapy unit, which makes a cancer diagnosis almost a death sentence for many. It is estimated that 300,000 women die from cervical cancer each year, which needs to stop as this form of cancer can typically be treated and cured in developed countries. The IAEA continues to spread awareness and will establish nuclear and radiation medicine services and provide training to medical professionals to help change these statistics. To learn more, read this article.

Solutions for Cooling Systems of a LINAC

LINACs are a type of particle accelerator that increases the kinetic energy of a particle that can be used in a variety of different areas such as scientific research or during radiation therapy to remove cancer cells of a patient. As with most medical and lab-related equipment, particle accelerators are negatively affected by thermal changes, especially with an increase of heat. It is of most importance to maintain temperature control of the equipment components to guarantee the integrity, performance, and reliability of the system. A solution that helps maintain temperature control is using a custom liquid cooling system. We will further discuss this option below so you can adequately care for your LINAC equipment.

How A LINAC Works

A medical linear accelerator (LINAC) produces and delivers a radiation beam using high energy x-rays or electrons to a targeted area to destroy cancer cells while carefully not damaging the surrounding normal and healthy tissues nearby. The medical equipment accelerates electrons in part of the accelerator called the waveguide and then allows the electrons to collide with a heavy metal target to create the high-energy x-rays. The radiation beams are shaped as they exit the machine to conform to the shape of the patient’s tumor. The patient lies on a movable treatment couch and the lasers are designed to be sure that the patient is in the correct position. The couch can move in a variety of directions along with the gantry – the part of the accelerator in which the radiation beam comes from.

Cooling System Needs

When using a LINAC during IMRT (intensity-modulated radiation therapy), the thermal consistency is necessary to maintain beam energy and stability. All the parts inside the equipment such as the tungsten target, waveguide, acceleration chamber, and the magnets need accurate thermal control to eliminate heat buildup and to allow the temperatures to remain the same for optimal usage for operation. Some of the parts within the machine, like the waveguide and filament material, require temperatures within .5 degrees Celsius. The solution to this is to install a liquid cooling system as the best option. In an IMRT system, the cooling path can be complicated. The water starts by cooling the charging drawer and oil pump. It then leads to the liquid cooling system that will decrease the temperature of the entire system, including the linear accelerator.

Types of Liquid Cooling

Liquid cooling systems are ideal for temperature control and stabilizing. They are designed to remove large amounts of heat that is generated in a densely packed electronic environment of a linear accelerator. It may cause concern that liquid coolant is so near all these electrical products but if the cooling system is designed and assembled correctly, there should be no issues. A few reasons these systems are more beneficial opposed to air-based heat exchangers is the ability to provide faster cooling, runs more quietly, and is more reliable with less downtime. Three options for cooling systems are:

  1. Liquid – Air Heat Transfer Configuration – a high-pressure pump that recirculates the liquid coolant and an air heat exchanger to remove heat in the liquid system
  2. Liquid – Liquid Configuration – the pump recirculates the coolant and the facility water is used for a liquid heat exchanger to remove heat from the higher temperature side
  3. Compressor – Based Chiller System – the pump recirculates coolant that is chilled to well below standard temperature

Radparts is the world’s largest independent distributor of OEM replacement parts for Linear Accelerators and Radiation Oncology equipment.  Radparts provides high quality, user-friendly, low-cost parts and support for linear accelerators and radiation equipment. More information can be found at https://www.radparts.com/.



New Forms of Flash Radiotherapy Being Researched

Treating cancer can be a long and tedious process with multiple procedures that need to be performed using radiation equipment such as linear accelerators. To become cancer-free, what if this process could be easier? An emerging form of treatment called FLASH radiation therapy treats a cancer patient with a similar amount of radiation normally given over weeks, dispensed at once, within a second of time. FLASH radiotherapy is found to be as effective in killing cancer cells without the continual exposure of radiation to healthy tissue. Researchers at Pennsylvania University are also studying that by changing the type of particle used in the linear accelerator from electrons to protons the treatment will penetrate deeper into the body, essentially making FLASH radiotherapy more effective in treating cancerous tumors. To read more about this new research, click here.